
AFRL-VA-WP-TP-2002-319 
TRANSITIONING TO PC-BASED 
SIMULATION-ONE PERSPECTIVE 
Joseph Nalepka, Thomas Dube, Glenn Williams, 
Adam Snyder, Thomas Danube, and G. Jeff Slutz 

JUNE 2002 

\ 
Approved for public release; distribution is unlimited. 

This material is declared a work of the U.S. Government and is not subject to copyright 
protection in the United States. 

AIR VEHICLES DIRECTORATE 
AIR FORCE RESEARCH LABORATORY 
AIR FORCE MATERIEL COMMAND 
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7542 

20020828 153 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data 
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of 
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson 
Davis Highway Suite 1204 Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a 
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.  

1. REPORT DATE (DD-MM-YY) 

June 2002 

2. REPORT TYPE 

Preprint 

3. DATES COVERED (From - To) 

Final, 08/01/2001-05/01/2002 
4. TITLE AND SUBTITLE 

TRANSITIONING TO PC-BASED SIMULATION-ONE PERSPECTIVE 

AUTHOR(S) 

Joseph Nalepka, Thomas Dube, Glenn Williams and Adam Snyder 
(AFRL/VACD) 
Thomas Danube (L3 Communications) 
G. JeffSlutz(Protobox) 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Simulation and Assessment Branch (AFRL/VACD) 
Control Sciences Division 
Air Vehicles Directorate 
Air Force Research Laboratory, Air Force Materiel Command 
Wright-Patterson AFB, OH 45433-7542  

L3 Communications, Inc. 

Protobox LLC 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

AIR VEHICLES DIRECTORATE 
AIR FORCE RESEARCH LABORATORY 
AIR FORCE MATERIEL COMMAND 
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7542 

5a. CONTRACT NUMBER 

In-house 
5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 
N/A 

5d. PROJECT NUMBER 

232F 
5e. TASK NUMBER 

IH 
5f. WORK UNIT NUMBER 

PA 
8. PERFORMING ORGANIZATION 

REPORT NUMBER 

AFRL-VA-WP-TP-2002-319 

10. SPONSORING/MONITORING AGENCY 
ACRONYM(S) 

AFRL/VACD 

11. SPONSORING/MONITORING AGENCY 
REPORT NUMBER(S) 
AFRL-VA-WP-TP-2002-319 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

13. SUPPLEMENTARY NOTES 
Conference paper to be published August 5, 2002 in Proceedings of AIM Modeling and Simulation Technologies 
Conference. This material is declared a work of the U.S. Government and is not subject to copyright protection in the 
United States. 

14. ABSTRACT 

Doing "more for less" is a recurring theme facing researchers in many simulation facilities. In the area of simulation, one 
way to reduce operational costs is to invest in and operate inexpensive simulation computer systems. Traditionally, this 
has not been possible because very specialized computer systems were required to build simulation architectures that 
provided a deterministic timing mechanism and also assured that simulation processes executed in a predetermined order 
throughout the entire execution period of the simulation. However, with the advent of 2.0 GHz processors, powerful 
graphics cards, and the wide availability of software, the personal computer (PC) is now becoming a realistic option for 
developing real-time simulation architectures. Air Force Research Laboratory (AFRL) researchers at the Aerospace 
Vehicle Technology Assessment and Simulation (AVTAS) Laboratory have integrated and tested a simple, PC-based, 
real-time simulation framework that executes under the Linux operating system. Using various hardware- and software- 
based timing mechanisms, along with nonspecialized software tools, the AVTAS Laboratory has developed a real-time 
simulation architecture that will enable the execution of simulation experiments on dual-CPU and quad-CPU PCs.  

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 

a. REPORT 
Unclassified 

b. ABSTRACT 
Unclassified 

c. THIS PAGE 
Unclassified 

17. LIMITATION 
OF 
ABSTRACT: 

SAR 

18. NUMBER OF 
PAGES 

14 

19a. NAME OF RESPONSIBLE PERSON (Monitor) 
Joseph Nalepka 

19b. TELEPHONE NUMBER (Include Area Code) 
(937) 904-6547 

HES&S 31-15093-1 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39-18 



AIAA-2002-4863 

TRANSITIONING TO PC-BASED SIMULATION - ONE PERSPECTIVE 
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L3 Communications, Inc. 
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ABSTRACT 
Doing "more for less" is a recurring theme facing 
researchers in many simulation facilities. In the 
area of simulation, one way to reduce operational 
costs is to invest in and operate inexpensive simu- 
lation computer systems. Traditionally, this has 
not been possible because very specialized com- 
puter systems were required to build simulation 
architectures that provided a deterministic timing 
mechanism and also assured that simulation 
processes executed in a predetermined order 
throughout the entire execution period of the simu- 
lation. However, with the advent of 2.0 GHz proc- 
essors, powerful graphics cards and the wide 
availability of software, the Personal Computer 
(PC) is now becoming a realistic option for devel- 
oping real-time simulation architectures. Air Force 
Research Laboratory (AFRL) researchers at the 
Aerospace Vehicle Technology Assessment and 
Simulation (AVTAS) Laboratory have integrated 
and tested a simple, PC-based, real-time simula- 
tion framework that executes under the Linux op- 
erating system. Using various hardware and soft- 
ware-based timing mechanisms, along with non- 
specialized software tools, the AVTAS Laboratory 
has developed a real-time simulation architecture 
that will enable the execution of simulation ex- 
periments on dual-CPU and quad-CPU PCs. 

This paper is declared a work of the U.S. Govern- 
ment and is not subject to copyright protection in 
the United States. 

INTRODUCTION 
One of the challenges in today's laboratory envi- 
ronment is trying to do more work with fewer re- 
sources. These resources include people, money, 
and simulation hardware to name a few. Tradi- 
tionally, simulation engineers were required to 
purchase and integrate very specialized and ven- 
dor specific computer systems into their simulation 
facilities. The primary reason for this is that these 
computer systems were developed specifically for 
real-time applications and were able to provide the 
accurate timing mechanisms that were necessary 
for synchronizing time critical simulation proc- 
esses. 

Although specialized computing systems are ex- 
cellent for providing a deterministic timing source 
and real-time architecture, they do come with sev- 
eral drawbacks. The first and most obvious draw- 
back is cost. These specialized computer systems 
tend to have very unique architectures and operat- 
ing characteristics that cause their costs to be sig- 
nificantly more than other "conventional" computer 
systems. Second, because these are specialized 
computer systems, many of the hardware and 
software components used with these machines 
are only developed and maintained by the vendor. 
Consequently, the user, in most cases, is required 
to purchase a maintenance agreement with the 
vendor that will cover service, repairs, and up- 
dates to both the computer hardware and soft- 
ware. Third, in some cases, the operating system 
for these computer systems is unique and thus a 
significant "learning curve" must be overcome in 
order to understand and utilize the system prop- 
erly. Fourth, many software development and 
troubleshooting tools are not compatible with 
these specialized computer systems. Conse- 
quently, a facility must resort to purchasing these 
tools from the vendor at a large cost or develop 
these tools on their own. Finally, because of the 
specialized architecture, many of the simulation 
software models have to be modified, compiled, or 
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run in a manner that takes advantage of the real- 
time operating features of the computer system. 
The unfortunate result of these modifications is 
that many simple software modules become com- 
plicated and less portable to other real-time com- 
puter systems. 

Although specialized real-time computer systems 
have been the status quo for simulation, they are 
now receiving stiff competition from another com- 
putation platform: the Personal Computer (PC). 
There are several reasons for this new competi- 
tion. First, with processor speeds now approach- 
ing the 2 GHz plateau, PCs now have the ability to 
execute the most complicated and computationally 
demanding software models very quickly. Sec- 
ond, PCs are relatively inexpensive when com- 
pared to specialized real-time computer systems. 
Third, an enormous amount of software is widely 
available for PCs, some of which can be obtained 
for little or no cost from the Internet or other 
"shareware" sources. Fourth, with the current ad- 
vances in graphics card technology, PCs are be- 
coming more and more capable of rendering very 
complex graphical images and scenes. Finally, 
because there are many PCs in use today, it is 
very easy to find a vendor that can troubleshoot 
and repair various hardware and software prob- 
lems without the need for purchasing a hardware 
or software maintenance agreement from the 
computer manufacturer itself. 

One of the major drawbacks of using PCs for real- 
time simulation is their inability to provide a deter- 
ministic timing source or to guarantee execution 
order for the simulation processes. Researchers 
in the Aerospace Vehicle Technology Assessment 
and Simulation (AVTAS) Laboratory at the Air 
Force Research Laboratory (AFRL) are address- 
ing this drawback and have successfully imple- 
mented a PC-based, real-time simulation architec- 
ture using the Linux operating system. The pur- 
pose of this paper is to quickly review previous 
results and then present the current research find- 
ings concerning the use of Linux for real-time 
simulation architectures. 

REAL-TIME SYNCHRONIZATION 
One of the most critical features of PC-based, 
real-time, simulation architectures is the ability to 
utilize an accurate or "deterministic" timing source. 
A deterministic timing source is one in which a 
particular simulation frequency or frame rate is 
maintained throughout the entire execution phase 
of the simulation, regardless of the activity that 
may be occurring on the computer system.   This 

type of real-time performance is necessary when 
there is a desire to minimize latency within a simu- 
lation or when simulation specific models are re- 
quired to update at a specific and constant rate. 

Before proceeding with the latest results and inno- 
vations for deterministic timing under Linux, it is 
first necessary to summarize previous results. For 
the AVTAS Laboratory, and as described in detail 
in Reference 1, it was necessary to have a simula- 
tion architecture that could provide deterministic 
timing to within one millisecond of the desired 
simulation frequency. The first approach taken for 
achieving this requirement was to use a set of In- 
stitute of Electrical and Electronics Engineers 
(IEEE) software standards called POSIX. Within 
POSIX, there exists a timing mechanism called the 
interval timer that provides the simulation engineer 
with a software-based, programmable timing 
source. This timer is a counter that is decre- 
mented after each computer clock tick. The initial 
value of this timer is based upon the user specified 
update frequency. When this counter reaches 
zero, the timer is said to "expire" and a signal is 
sent to a process that is waiting to capture this 
signal. The timer is then automatically reset and 
the countdown to the next interval begins.2 

Interval Timer 100 Hz Timing Test (Noisy System) 
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Figure 1 - Single-Processor POSIX Timing Test 
(Noisy System) 

Unfortunately, it was discovered that the POSIX 
interval timer was easily influenced by background 
system activity1. Figure 1 and Figure 2 show tim- 
ing results for the POSIX based interval timer on 
both a "noisy" single-CPU and "noisy" quad-CPU 
computer system. A noisy computer system is 
one in which various system activities such as disk 
searching, software compilation, mouse move- 
ment, and various window operations are occur- 
ring in order to evaluate the timer under very de- 
manding system conditions. What these timing 
results show is that there is considerable variation 
in the timing mechanism for a 100 Hz simulation 
frequency, even on a system that has 4 CPUs 
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available for data processing. From these results, 
it was concluded that the POSIX interval timer 
(under Linux) would not be an acceptable timing 
source for the AVTAS Laboratory real-time simula- 
tion architecture. 

Interval Timer 100 Hz Timing Test (Noisy System) 
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:igure 2 - Quad-Processor POSIX Timing Test 
(Noisy System) 

One thing that should be noted is that the POSIX 
interval timer is an example of a "non-polling" 
timer. A non-polling timer allows the calling proc- 
ess to "sleep" and thus yield the processor to an- 
other process, while the calling process waits for 
an alarm signal from the operating system. The 
greatest advantage to this type of timer is that the 
processor can be used for other processing and 
the calling process can be "woken up" at the ap- 
propriate time. However, research at the AVTAS 
Laboratory has yielded some surprising results 
from "polling" timers, which constantly sample a 
variable or memory address until it reaches a 
specified value. 

SCRAMNet 100 Hz Timing Test (Noisy System) 
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:igure 3 - Quad-Processor SCRAMNet Timing 
Test (Noisy System) 

The second approach that was taken by AFRL 
researchers for simulation timing was a hardware- 
based, polling timer solution: SCRAMNet. Typi- 
cally, for simulation experiments, SCRAMNet is 
used as a shared memory extension to allow dif- 
ferent simulation computers to share simulation 
data.   However, an additional feature of SCRAM- 

Net is its user-programmable timer that has a 
resolution of 1.706 microseconds. Figure 3 shows 
a timing diagram that validates the utility of 
SCRAMNet as a simulation timing mechanism. 
Even under noisy computer system conditions, 
fluctuations of the SCRAMNet based timer were 
well within the one-millisecond resolution specifi- 
cation for the AVTAS Laboratory simulation archi- 
tecture. From these results, it was concluded that 
the SCRAMNet timer would be an acceptable tim- 
ing source for the AVTAS Laboratory real-time 
simulation architecture. 

Digital PCI I/O Board 100 Hz Timing Test (Noisy System) 
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:igure 4 - Dual Processor PC I/O Timing Test 
(Noisy System) 

Although SCRAMNet was demonstrated to be a 
very reliable timing mechanism, its unfortunate 
drawback is that it can cost more than the PC itself 
(nearly $6000). Consequently, this makes 
SCRAMNet a very expensive acquisition, espe- 
cially if one is only considering using it as a simu- 
lation timing mechanism. As a result, AFRL re- 
searchers began exploring two alternative solu- 
tions for simulation timing. The first solution was a 
hardware-based implementation that,was signifi- 
cantly less expensive than a SCRAMNet board 
(less than $100). This implementation was a 24- 
Channel, PCI Digital I/O Board with programmable 
timer (2 microsecond resolution) that can be used 
as both a polling and non-polling timer. As was 
done in previous experiments, timing measure- 
ments were also made using this I/O Board. 
These measurements were done on a dual-CPU, 
1.0 GHz PC with 1 GB of RAM at a timing fre- 
quency of 100 Hz under noisy computer system 
conditions. Although not presented here, when 
this board was used as a non-polling timer, the 
performance was not acceptable. When used as 
a polling timer, however, it functioned very much 
like the SCRAMNet timer. These results are 
shown in Figure 4. From these results, it is seen 
that this timer is well within the one-millisecond 
resolution specification for the AVTAS Laboratory 
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Simulation architecture. Consequently, it was con- 
cluded that the Digital I/O Board would be an ac- 
ceptable timing source for the AVTAS Laboratory 
real-time simulation architecture provided it was 
used in a polling mode only. 

The second alternative solution that was explored 
was a "purer" software-based, polling timer solu- 
tion. This software solution uses a standard Linux 
utility called gettimeofday. The purpose of this 
utility is to retrieve the time since Epoch, or, in 
more common terms, the time in seconds and mi- 
croseconds since 1 January 19703. This timer is 
implemented by first using gettimeofday at the 
start of a simulation frame to get a reference time 
for the frame. The simulation software continually 
reads or "polls" the system clock using gettimeof- 
day until it is time for the next simulation frame to 
begin. Before the next frame is started, the frame 
reference time is incremented by the absolute 
simulation frame period and the countdown until 
the start of the next simulation frame is begun us- 
ing this new reference frame time. 
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Figure 5 - Implementation of the "gettimeofday" 
Timing Mechanism 

The main reason for incrementing time based on 
the absolute simulation frame period is to minimize 
the long-term timing errors of the simulation. Be- 
cause of round off and other numerical precision 
errors, the frame period, when measured "abso- 
lutely" using gettimeofday, may vary slightly be- 
tween two successive frames. However, these 
small errors between simulation frame times will 
become additive and result in a very large timing 
error at the end of the simulation. By adding the 
absolute frame period to the previous reference 
time, it is guaranteed that the long-term simulation 
timing error is reduced to the error as measured 
between the last two simulation frames, which is 

very small. An example of the gettimeofday poll- 
ing timer implementation is shown in Figure 5. 

Timing measurements were conducted on this 
timing implementation using a dual-CPU, 1.0 GHz 
PC with 1 GB of RAM at a timing frequency of 100 
Hz under noisy computer system conditions. The 
results of these measurements are shown in Fig- 
ure 6. Despite being a software-based timer, 
these results show surprisingly good accuracy in 
maintaining the desired simulation frequency. As 
expected, additional computer system activity had 
an influence on the accuracy of this timer, but sur- 
prisingly it performed only slightly worse than ei- 
ther of the "hardware-based" implementations. 
This reduced performance still produced a simula- 
tion frequency that was well within the one- 
millisecond resolution specification for the AVTAS 
Laboratory. As a result, it was concluded that this 
timing mechanism would also be an acceptable 
timing source for the AVTAS Laboratory real-time 
simulation architecture. 

Dual Processor "gettimeofday" 100 Hz Timing Test 
(Noisy System) 

Figure 6 - Dual Processor "gettimeofday" Timing 
Test (Noisy System) 

What has been demonstrated thus far is that there 
are several alternatives available for simulation 
timing if small amounts of variation are tolerable 
with the timing mechanism itself. For a low cost 
solution, both the software-based timer using the 
gettimeofday function and the Digital I/O Board 
provide an excellent solution. However, if it is 
necessary to share data amongst different com- 
puter systems, the SCRAMNet solution, although 
more expensive, is able to provide the simulation 
with not only a shared memory mechanism be- 
tween the computer systems but also a very reli- 
able timing source. The lesson to be learned from 
these timing experiments is that there are a num- 
ber of simulation timing solutions available for a 
simulation when utilizing the Linux operating sys- 
tem. However, the choice of timing mechanism for 
a particular real-time architecture will be based on 
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the timer's resolution requirements, the amount of 
acceptable variation in the timing source from the 
desired frame rate, and the cost constraints of the 
simulation facility. 

REAL-TIME ARCHITECTURE DESIGN 
A key component of any real-time simulation archi- 
tecture is the ability to control those processes that 
are running within this architecture. For instance, 
a requirement of the AVTAS Laboratory real-time 
architecture is the ability to execute simulation 
processes in a specific order at a specific simula- 
tion rate. In the case when multiple CPUs are re- 
quired, it is necessary for these simulation proc- 
esses to execute in parallel to one another to as- 
sure maximum computational efficiency. A 
graphical representation of this design philosophy 
is shown in Figure 7. In this figure, each bar 
represents a real-time process and the length of 
each bar represents the amount of time required 
by the real-time process to execute within a simu- 
lation frame. 
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Figure 7 - Real-time Architecture Design Philoso- 

phy 

One of the problems with this approach, however, 
is that it is not completely supported under POSIX. 
With POSIX, the user has the ability to assign an 
execution priority to a process in order to control 
execution order, however, it does not provide a 
mechanism for assigning processes to a specific 
processor. Consequently, the operating system 
decides which CPU will run a real-time simulation 
process based on CPU availability at a given in- 
stant of time. Because the POSIX standard did 
not provide a mechanism for achieving this, an 
alternative solution, developed by Tim Hockin, 
(http://isunix.it.ilstu.edu/~thockin/pset) was imple- 
mented. The purpose of these utilities, called 
PSET, is to enable the user to assign a process to 
a specific processor, restrict a processor's ability 
to execute processes, restrict a processor from 

running at all, and get information about a proces- 
sor's execution state. Use of these utilities simply 
involves patching them into the Linux kernel and 
then rebuilding the kernel itself. 

At the time of its implementation into the AVTAS 
Laboratory in 2001, this simple operating system 
patch along with the POSIX standards enabled 
AFRL researchers to create a real-time, concur- 
rent processing simulation architecture. Unfortu- 
nately, this implementation had two major draw- 
backs. First, because this implementation re- 
quires the use of specialized function calls within 
the real-time simulation architecture (as a result of 
the PSET utilities), this architecture itself became 
less portable between PCs. Although this problem 
is easily resolved by installing the patch onto all 
PCs within the AVTAS Laboratory, it is still a level 
of effort that should not be required. Second, and 
probably most bothersome, is that the PSET utili- 
ties themselves are not very portable between dif- 
ferent versions of the Linux Kernel. The initial de- 
velopment of the PC-based architecture within the 
AVTAS Laboratory was done under Linux Kernel 
Version 2.2. As new computers and new com- 
puter hardware were acquired for the AVTAS 
Laboratory, it became necessary to upgrade to 
Linux Kernel Version 2.4. An unfortunate artifact 
of this upgrade was that the PSET utilities, written 
for Linux Kernel Version 2.2, no longer operated 
properly. In order to fix this problem, it was nec- 
essary for AFRL researchers to become familiar 
with the Linux Kernel software itself in order to 
modify the PSET utilities for proper operation un- 
der this newer version of the Linux Kernel. Al- 
though this is not an impossible task, the idea of 
having to perform this same exercise for future 
Linux Kernel releases made this a very undesir-1 

able and high maintenance task for AFRL re- 
searchers. Consequently, ah alternative solution 
was sought for creating the real-time, concurrent 
processing simulation architecture. 

For AFRL researchers, the ideal approach to de- 
veloping the real-time architecture was to elimi- 
nate any reliance on "specialized" software for the 
simulation architecture. For this reason the 
POSIX based solution was utilized. This approach 
provided a mechanism for controlling the execu- 
tion order of simulation processes (by enabling the 
assignment of an execution priority to a simulation 
process), however, it did not guarantee which 
processor would be utilized during execution. The 
question asked by AFRL researchers at this point 
was: Is locking a process to a specific processor 
critical for a real-time architecture? 
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There are many arguments that can be presented 
to justify why a real-time simulation process 
should or should not be locked to a specific com- 
puter processor. One such answer in favor of this 
approach is that you minimize the amount of lost 
processing time in a given simulation frame as a 
result of a process switching between processors 
during execution. However, the counter argument 
is that the amount of time lost as a result of this 
"switching" is on the order of microseconds and 
that unless you are using nearly all of your simula- 
tion frame for executing simulation processes, this 
switching time will be insignificant and not result in 
overruns in the simulation frame time. 

Still another argument in favor of locking a process 
is that you guarantee that the only thing that will 
be executing on a specific processor will be the 
real-time process itself. This is important because 
it is undesirable to have non-real-time processes, 
such as those related to compiling or other operat- 
ing system activity, interfering with or taking away 
from the overall simulation frame time. The 
counter argument to this, however, is that if the 
execution priority of a real-time process is higher 
than the execution priority of the non-real-time 
processes, the real-time processes will have the 
priority for execution and will not be preempted by 
the non-real-time processes. This last point, how- 
ever, assumes that you have at least one proces- 
sor available for operating system activities. Oth- 
erwise, the inability to execute operating system 
processes will have an adverse affect on the over- 
all operation of the computer system itself. It is for 
this reason that the AVTAS Laboratory simulation 
architecture requires at least a dual-CPU com- 
puter system (one processor for operating system 
activity and one for the real-time processes)1. 

Upon review of the AVTAS Laboratory real-time 
architecture requirements, AFRL researchers 
came to the conclusion that the ability to control 
the order of execution of processes far outweighed 
the requirement for executing simulation proc- 
esses on a specific processor. The rationale for 
this decision is that as long as all simulation proc- 
esses finish within the allotted simulation frame 
time and that they execute in the desired order, it 
does not matter if a specific simulation process 
executes on a different CPU from one simulation 
frame interval to the next. As was previously men- 
tioned, POSIX already provides a mechanism for 
assigning real-time processes a higher execution 
priority over non-real-time processes. Conse- 
quently, the only remaining challenge was to im- 
plement a mechanism for controlling the order of 

execution of the real-time processes. The imple- 
mentation that was adopted was to utilize a stan- 
dard operating system feature called semaphores. 

In basic terms, a semaphore is a location in mem- 
ory, which is visible to all processes and whose 
value can be tested and set with a single instruc- 
tion. The test and set operation is, as far as each 
process is concerned, uninterruptible and once 
started, nothing can stop it. Depending on the 
result of the test and set operation, one process 
may have to sleep until the semaphore's value is 
changed by another process4. The values that are 
tested can be positive or negative, but, typically, 
are usually either 0 or 1. 

The best way to explain the functionality of sema- 
phores is through an example: 

Let's say you had two processes, both of 
whose job was to read and write data to a data 
file, but only one process can have the file 
open at a time. It is easiest to think of the re- 
source as actually, being the semaphore. A 
value of 1 means the resource is available, and 
a value of 0 means the resource is unavailable. 
At the start of execution, the value of the 
semaphore (the resource) is initialized to 1 to 
indicate that it is available. The first process 
tests the "resource" to see if it's available. 
Since the value is 1, the first process immedi- 
ately decrements the semaphore by 1. Now 
the value of the semaphore is 0, which in effect 
"locks" the data file to every process except the 
first process. When the second process tries 
to test the semaphore, it will see the value is 0, 
which indicates the resource is unavailable, 
therefore the operating system will place the 
second process in the wait queue to wait until 

.. the resource becomes available again. It is 
important to note that second process is no 
longer a running process, but it is a "sleeping" 
process. Meanwhile, the first process finishes 
with the data file. The first process will then in- 
crement the semaphore value (making the 
value 1) to indicate that the resource is avail- 
able again. The operating system will wake the 
second process up, because the resource is 
available again (i.e., the semaphore's value 
becomes greater than or equal to 1). This will 
continue, thus enabling each process to access 
the data file one process at a time4. 

Before explaining how semaphores were incorpo- 
rated into the real-time simulation architecture, it is 
first important to define a new concept developed 
by AFRL researchers.  As a means of identifying 

American Institute of Aeronautics and Astronautics 



sets of simulation processes that must follow one 
another in their order of execution, the term "Fam- 
ily" was established. Again, this can be best ex- 
plained by an example: 

Referring to Figure 7, Family 1 would consist of 
Process 1 and Process 2 because Process 2 
can only run after Process 1 has completed. 
Likewise, Family 2 would consist of Process 3, 
Process 4, and Process 5. Finally, Family 3 
would consist of only Process 6. It is the job of 
the new semaphore scheme to assure that the 
order of execution within a Family is main- 
tained. In other words, the job of the sema- 
phores, in the case of Family 2, is to assure 
that Process 4 does not run until Process 3 is 
finished and, likewise, to assure Process 5 
does not run until Process 4 is finished. Be- 
cause the order of process execution is only 
defined within a particular Family, the order of 
execution in one Family has no affect on any of 
the other Families. For example, again refer- 
ring to Figure 7, the order of execution and the 
time when processes start in Family 1 and 
Family 3 has no influence on the processes in 
Family 2. 

In order to implement the Family concept using 
semaphores, three different types of semaphores 
had to be created: Frame Start, Frame End, and 
Family. The purpose of each type is as follows: 

Frame Start: An array of semaphore elements 
with each element corresponding to a Family. 
This semaphore array is used to simultane- 
ously start the first family member in each fam- 
ily. This is analogous to a green traffic light; 
the time when the light turns green signifies the 
beginning of the frame. 
Family: An array of "n" semaphore ejements 
with each element corresponding to a specific 
process (family member) within a Family. Each 
element can take on a value of 0 or 1, with 0 
indicating that the family member is not free to 
execute and 1 indicating that a family member 
is free to execute. Only one element within this 
n-element array will have a value of 1, indicat- 
ing that only one family member within a Fam- 
ily is free to execute at any given time. Ele- 
ments change state from 0 to 1 starting from 
the first element of the array and proceeding to 
the n"1 element of the array. This is analogous 
to standard, single lane traffic flow at a green 
light. 
Frame End: An array of semaphore elements 
with each element corresponding to a Family. 
Each array element can take on a value of 0 or 

1, with 1 indicating that all family members 
within the Family are done executing and 0 in- 
dicating that all family members within the 
Family have not yet finished executing. This 
operation is analogous to a yellow traffic light, 
when the first Family finishes execution, and 
also to a red traffic light, when all Families have 
finished execution. When the "light" turns red, 
the timer checks to see how much time is re- 
maining until the end of the frame and takes 
any appropriate actions such as reporting 
simulation frame overruns. 

It should be noted that the concept of a Family 
now replaces the notion of a CPU, as was shown 
in Figure 7. In this Figure, all processes were ex- 
pected to run in the same order on the same CPU. 
With the concept of a Family, the order of execu- 
tion is maintained but the processor in which exe- 
cution takes place may be different. This will be 
explained in more detail later. 

The best way to illustrate the use of this sema- 
phore scheme and the concept of a Family is 
through a graphical example, shown in Figure 8. 
This figure shows a "snapshot" of execution time 
within a given simulation frame (denoted by the 
"Current Time" arrow to the left of the diagram). 
An initial observation is that all of the Families 
have begun execution. We know this is true be- 
cause all elements of the Frame Start semaphore 
are 0. When the frame was started, they were all 
set to 1, but they were immediately decremented 
to 0 by the first family member of each Family. 
We can also observe that Family 1 has finished 
executing because its corresponding element in 
the Frame End semaphore is a 1. Neither Family 
2 nor Family 3 has completed its execution yet 
because their respective elements of the Frame 
End semaphore array are both 0. Also notice in 
Family 2 that Process 5 is now permitted to run, 
because its respective element in the Family 2 
semaphore array is a 1 and there can be no more 
than one family member per Family permitted to 
run at one time. The same is true with Process 8 
in Family 3. 

As previously mentioned, the idea of a Family now 
replaces the conceptual idea of running and lock- 
ing processes to specific processors. Because the 
PSET utilities are not being utilized, and POSIX 
does not support processor locking, this new simu- 
lation architecture will only guarantee order of 
execution and not the processor upon which a 
simulation process will be executing. The proces- 
sor that is used and which processes are affected 
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is strictly up to the scheduling mechanism within 
Linux. In addition, the processor upon which 
frame to the next. It is for this reason that one 
more CPU than simulation Family is required on a 
simulation computer. 
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Figure 8 - Architecture Implementation Using 
Semaphores 

FUTURE ENHANCEMENTS 
Currently, the AVTAS Laboratory's real-time archi- 
tecture has been integrated and tested on both 
dual-CPU and quad-CPU PCs. For many applica- 
tions, limiting the simulation execution to one PC 
is not a problem. However, for more complex 
simulations with a high computational demand, 
one PC may not be adequate and thus additional 
PCs may be necessary to augment the demand 
for more "number crunching" capability. In addi- 
tion, many facilities, including the AVTAS Labora- 
tory, have computer systems that are dirrerent 
from the PC that can be used for real-time simula- 
tions. Consequently, the next step in the evolution 
of this simulation architecture is to extend the cur- 
rent implementation to work across multiple com- 
puter systems and thus create a parallel comput- 
ing architecture. When this advanced design is 
implemented, it will provide AFRL researchers with 
a more flexible and resource efficient mechanism 
for designing and conducting real-time simulation 
experiments. 

these tasks execute can vary from one simulation 

provides an accurate, real-time, deterministic up- 
date frequency, but is also independent on any 
specialized software or operating system 
"patches." Through the use of the POSIX stan- 
dard, operating system semaphores, and various 
hardware or software based timing mechanisms, 
AFRL researchers were able to create a determi- 
nistic, real-time simulation architecture that guar- 
antees the order in which simulation processes 
execute through a newly developed concept called 
a "Family." Although this architecture makes no 
guarantees as to which processor a particular 
simulation process will execute, testing within the 
AVTAS Laboratory has demonstrated that proces- 
sor "swapping" does not have a significant impact 
on the overall performance of the simulation. 
Consequently, as this real-time architecture is ex- 
tended to run with more than one computer sys- 
tem, the end result for AFRL researchers will be a 
low cost and efficient alternative to developing and 
executing real-time, deterministic simulations. 
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CONCLUSIONS 
Researchers at the Air Force Research Laboratory 
have implemented a simulation architecture that 
will execute on a Personal Computer using the 
Linux operating system. This architecture not only 
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